

Recherche des arbres gîtes des chiroptères dans le massif forestier de Saint-Michel Freyr

Direction de la Nature et de l'Eau (DEMNA/SPW) & Plecotus

RAPPORTS FAUNE - FLORE - HABITATS

Service Public de Wallonie – Agriculture, Ressources Naturelles et Environnement Département de l'Etude du Milieu Naturel et Agricole (DEMNA) Direction de la Nature et de l'Eau (DNE)

Rédaction et relecture du rapport

Quentin Watthez¹, Quentin Smits¹, Cécile Van Vyve², Jonathan Demaret², Jeanne David², Jérémie Guyon², Pierrette Nyssen², Eva Tafforeau¹

- ¹ Département de l'Etude du milieu Naturel et Agricole (DEMNA) Service Public de Wallonie
- ² Natagora –Département Etudes

Collecte des données sur le terrain

Anaïs Beaumariage, Hugues Borremans, Nicolas Boulangé, Sophie Bourdieu, Romain Bruffaerts, Alexis Buckens, Marion Campeol, Quentin Carbonnier, Gabriel Casalanguida, Carolina Ceijas, Margaux Collet, Lison Cowez, Jeanne David, Johanna De Crom, Amandine Delbeauve, Jonathan Demaret, Valérie De Waele, Nancy Debey, Amandine Delbeauve, Dylan Delvaux, Camille Depré, Gauthier Deschamps, Manon Eymard, Valérie Gourmet, Louis Henry de Generet, Jérémie Guyon, Jérôme Johnen, Blandine Keymolen, Coraline Lafourt, Lionel Lebon, Céline Malengreaux, Matteo Marcandella, Violette Mayaux, David Michelante, Benoît Molitor, Pierrette Nyssen, Marie Parmentier, Line Raiff, Jean-Benoît Reginster, Marie-Julie Robyns, Mathys Rotonda, Marina Ruchel, Nora Scieur, Quentin Smits, Eva Tafforeau, Charlotte Tinel, Marie-Jeanne Triplot, Mathilde Vandendriessche, Lucie Vanderlinden, Marie Vanschepdael, Cécile Van Vyve, Chloé Vescera, Nathalie Zinger, Quentin Watthez.

Mise en page

Violaine Fichefet (DNE)

Remerciements

Nous tenons à remercier le personnel du Service Public de Wallonie : Bénédicte Heindrichs, Marc Herman, Annick Terneus et Alain Licoppe ainsi que le Département Nature et Forêt du cantonnement de Nassogne : Stéphane Abras, Sébastien Herman, Thierry Petit, Benoit Mackels, Philippe Moës, Nicolas Van Hove. Par ailleurs, nous remercions le CREAVES de Namur pour la revalidation du murin de Brandt.

Citation du document

Watthez Q., Smits, Q., Van Vyve C., Demaret J., David J., Guyon J., Nyssen P., Tafforeau E. (2025) Recherche des arbres gîtes des chiroptères dans le massif forestier de Saint-Michel Freyr. Rapports Faune-Flore-Habitats du Département de l'Etude du Milieu Naturel et Agricole (SPW ARNE), n° 6, Gembloux, 36 p.

Octobre 2025

RESUMÉ EXÉCUTIF

Les arbres servant de gîtes pour les chiroptères des milieux forestiers restent encore relativement méconnus. Dans une optique de gestion, leur sauvegarde est pourtant essentielle à la conservation de ces espèces. Au cours de cette étude, 29 individus appartenant à 9 espèces différentes de chauvessouris ont été capturées et marquées afin de pouvoir identifier les arbres-gîtes au moyen d'un suivi par télémétrie. Les résultats ont permis d'identifier 29 gîtes différents, parmi lesquels 26 sont des gîtes arboricoles appartenant à

4 essences différentes. La majorité sont des arbres vivants, ne présentant pour la plupart pas de dendro-microhabitats évidents pour un observateur au sol. Par ailleurs, un suivi de quelques-uns de ces arbres-gîtes au moyen de pièges photographiques n'a pas permis de mettre en évidence une interaction négative entre les colonies de chauves-souris et le raton laveur, espèce exotique envahissante soupçonnée de pouvoir occasionner un phénomène de prédation.

EXECUTIVE SUMMARY

The trees used as roosts by bats in forest environments remain relatively poorly understood. From a management perspective, their preservation is nevertheless essential for the conservation of these species. During this study, 29 individuals belonging to 9 different bat species were captured and tagged in order to identify roost trees through telemetry tracking. The results made it possible to identify 29 different roosts, 26 of which were tree roosts belonging to 4 different tree species.

The majority of these trees are living and, for the most part, do not display obvious dendro-microhabitats to an observer on the ground. Furthermore, monitoring some of these roost trees using camera traps did not reveal any negative interaction between bat colonies and raccoons - an invasive exotic species suspected of potentially causing predation.

3	Résumé exécutif - Executive summary
6	Introduction
7	Objectifs de l'étude
	Matériel et méthodes
	Zone d'étude
8	Protocole de capture
9	Biométrie
	Suivi des individus par télémétrie
	Suivi des individus
	Suivi des interactions
10	Logiciels
	Autorisations
10	Résultats
	Efforts de capture
12	Stade et sex ratio
	Marquage
	Relocalisation des individus
17	Comptages en émergence
18	Nombre d'arbres-gîtes par espèces et individus
	Distances entre sites de capture et gîte
	Synthèse des types d'arbres-gîtes
19	Surveillance des arbres-gîtes par pièges photographiques
20	Discussion
	Bilan des captures
	Succès du suivi télémétrique
21	Diversité des espèces
	Utilisation des arbres-gîtes
	Découvertes remarquables
22	Interactions avec les arbres-gîtes
24	Conclusions
25	Références
26	Annexes
	Emplacement et caractéristiques des arbres-gîtes
	Cartographie des arbres-gîtes et de la relocalisation du grand rhinolophe
	Données biométriques des chauves-souris capturées

INTRODUCTION

Les cavités arboricoles jouent un rôle crucial pour l'accueil de la biodiversité et le maintien de l'équilibre écologique des écosystèmes forestiers. Elles servent de refuges et de sites de nidification ou reproduction à de nombreuses espèces animales, contribuant ainsi à la préservation de la diversité biologique. La présence croissante du raton laveur (*Procyon lotor*), espèce exotique envahissante en Wallonie, suscite des préoccupations quant à son impact sur la faune indigène. En effet, l'accès à ces cavités par les ratons laveurs, localement présents à des densités importantes, pourrait entraîner des interactions écologiques négatives sur des espèces autochtones sensibles, notamment via la prédation ou la compétition.

Les cavités arboricoles constituent un micro-habitat très intéressant pour de nombreuses espèces mais restent peu fréquentes dans l'environnement compte tenu des pratiques sylvicoles. Les cavités arboricoles sont ainsi utilisées par des mammifères indigènes tels que l'écureuil roux (Sciurus vulgaris) et la martre des pins (Martes martes). Elles sont également utilisées pour la nidification par plusieurs espèces d'oiseaux telles que le pic noir (Dryocopus martius), le pic épeiche (Dendrocopos major), la chouette hulotte (Strix aluco) ou le pigeon colombin (Columba oenas).

Les cavités arboricoles constituent également des gîtes importants pour plusieurs espèces de chauves-souris forestières, dont certaines figurent dans l'annexe II de la directive Habitats Natura 2000, principalement le murin de Bechstein (Myotis bechsteinii), et la barbastelle d'Europe (Barbastella barbastellus). D'autres espèces protégées et visées par l'annexe IV de la même directive utilisent les cavités d'arbres, comme par exemple les espèces du groupe

des murins à moustaches (Myotis mystacinus), qui inclut le murin de Brandt (M. brandtii) et le murin d'Alcathoe (M. alcathoe). Sont également concernés le murin de Natterer (Myotis nattereri), le murin de Daubenton (Myotis daubentonii) les deux espèces de noctules (Nyctalus noctula et N. leisleri) ou encore les deux espèces d'oreillards (Plecotus auritus et P. austriacus). Les pipistrelles communes (Pipistrellus pipistrellus) et de Nathusius (Pipistrellus nathusii) sont également connues pour gîter occasionnellement en cavités arboricoles [1,2].

Incapables de créer elles-mêmes leurs gîtes, les chauvessouris dépendent des cavités naturelles ou artificielles : loges de pics, écorces décollées, fentes, fissures, etc. Ces gîtes peuvent varier selon les espèces, leurs besoins et la période de l'année. Les chiroptères utilisent principalement deux types de gîtes au cours de leur cycle biologique, les gîtes d'hibernation et de reproduction. Entre ces deux périodes, elles occupent également des gîtes intermédiaires permettant à chaque individu de transiter entre les gîtes d'hibernation et colonies de reproduction. Elles exploitent également des gîtes temporaires comme lieu de repos entre deux sessions de chasse ou en cas d'intempéries [2].

En été, au cours de la période de reproduction, il y a ségrégation des sexes : les femelles se regroupent en maternité pour donner naissance aux jeunes, alors que les mâles gîtent séparément, le plus souvent seuls ou en petits groupes. C'est notamment le cas pour Myotis daubentonii, Myotis nattereri, Nyctalus noctula et Nyctalus leisleri [1]. Il est toutefois documenté chez certaines espèces telles que P. auritus que des mâles peuvent rejoindre les femelles dans leur colonie de reproduction [3].

Plusieurs références issues de la littérature ont mis en évidence un phénomène de prédation des ratons laveurs sur certaines espèces de chauves-souris. En Pologne, une étude réalisée dans la réserve naturelle de Nietoperek, l'un des plus grands sites d'hibernation en Europe centrale, a montré que les ratons laveurs avaient un impact significatif sur les populations de chauves-souris pendant leur hibernation. En particulier, l'étude a révélé que sur 67 fèces de ratons laveurs retrouvées dans la grotte, 96% d'entre elles contenaient des restes de chauves-souris [4]. Une consommation significative de chauves-souris par des ratons laveurs a également été enregistrée sur des colonies atteintes du syndrome du museau blanc (Pseudogymnoascus destructans) aux États-Unis [5]. Dans ce même pays, d'autres observations ont permis d'observer des ratons laveurs en train de perturber des colonies de chauves-souris au niveau de cavités arboricoles et d'essayer de les capturer [6].

En Wallonie, de fortes suspicions pèsent aussi sur la responsabilité du raton laveur dans la destruction d'une colonie de chauves-souris dans un bâtiment à Brugelette (M. Marcandella, communication personnelle 2025). En 2021, des ratons laveurs ont été observés dans des galeries souterraines qui hébergent des colonies de chauves-souris (Ardoisière de Gerardfosse – Bouillon). Visiblement accommodés à l'obscurité, ils semblait évident que ces mésocarnivores opportunistes pouvaient facilement s'attaquer à des chauves-

souris en hibernation sur les parois (S. Pirot, Direction de la Nature et des Forêts, communication personnelle).

Si la majorité de ces observations sont liées à des habitats souterrains, d'autres auteurs ont tempéré ce phénomène de prédation pour les habitats forestiers, en démontrant que les espèces les plus souvent identifiées dans les excréments de ratons laveurs au cours de cette étude n'étaient pas les plus abondantes sur le site mais celles qui nichent près du sol, les rendant ainsi plus faciles à attraper par le prédateur. Dans une autre étude [7], malgré la présence confirmée de plusieurs espèces de chauves-souris sur les différents sites de collecte d'excréments, celles-ci n'ont pas été retrouvées dans le régime alimentaire des populations étudiées. Il est donc probable qu'en dehors du contexte de l'hibernation, où les chiroptères sont longtemps immobiles au même endroit, ces proies soient difficilement accessibles pour le raton laveur. D'autres auteurs soulignent que le phénomène de prédation en milieu forestier pourrait être exacerbé dans les zones forestières où les micro-habitats sont limités et où les densités de ratons laveurs sont plus importantes [6].

OBJECTIFS <u>DE L'ÉTUDE</u>

Cette étude s'inscrit dans le contexte plus général d'un projet de recherche sur l'écologie du raton laveur en milieu forestier, initié au printemps 2024 par le Département de l'Etude du Milieu Naturel et Agricole (SPW-DEMNA). Dans la continuité d'un axe de recherche visant à identifier les interactions du raton laveur avec la faune indigène au niveau des cavités arboricoles, ce travail avait pour objectif initial d'évaluer la pression potentielle que pouvait exercer le raton laveur sur des colonies de chiroptères.

Ce projet étant relativement exploratoire dans sa méthodologie et les résultats incertains, une collaboration fut proposée à Natagora afin de mutualiser les ressources déployées sur le terrain pour identifier les arbres pouvant servir de gîtes aux différentes espèces de chauves-souris forestières, via la localisation d'individus pistés par télémétrie radio. Dans le cadre de l'élaboration de plans d'actions pour le programme Life B4B, une attention particulière était portée sur Myotis brandtii et Myotis alcathoe.

MATÉRIEL ET MÉTHODES

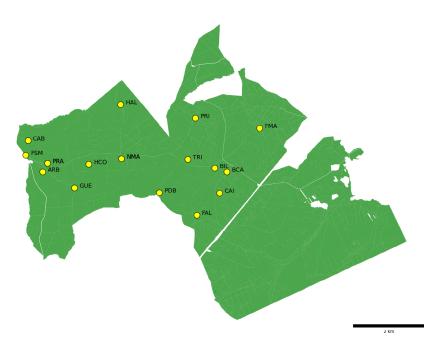
ZONE D'ÉTUDE

L'étude se déroule au cœur du massif forestier de Saint-Michel-Freyr, près de la ville de Saint-Hubert, en province de Luxembourg, en Wallonie. Ce territoire fait partie des Chasses de la Couronne, et bénéficie ainsi d'une gestion forestière spécifique assurée depuis plusieurs décennies par le Département de la Nature et des Forêts du Service Public de Wallonie (SPW-DNF).

Grâce à son patrimoine naturel et sa richesse biologique, le site constitue un lieu d'intérêt majeur pour la conservation de la nature. Pour simplifier l'organisation de la campagne, la zone couverte par l'étude se limite à la partie du territoire située au nord-ouest de la N89, qui divise le massif en deux parties.

Protocole de Capture

La campagne de capture des chauves-souris a lieu du 5 au 12 juillet 2024, sur 6 nuits consécutives. Chaque soir, 3 équipes de 7 personnes sont assignées à un site de capture. Composées de volontaires du pôle Plecotus de Natagora, formés et supervisés par un chiroptérologue expérimenté, ces équipes se répartissent sur 16 sites choisis en fonction des résultats d'un inventaire acoustique réalisé au printemps 2024. Les sites sélectionnés privilégient ceux où des enregistrements acoustiques préalables ont démontré une activité de chasse importante et qui sont facilement accessibles, proches de chemins carrossables. Ces choix visent à concilier praticité et respect de la tranquillité forestière nocturne.


Pour maximiser l'efficacité des captures et la diversité des espèces, les sites couvrent différents types d'habitats du massif forestier : gagnages, zones humides, lisières, prairies, hêtraies, etc.

Sur chaque site, plusieurs filets japonais ultra-fins en nylon, avec une maille de 14 mm, sont déployés avant le coucher du soleil. Ces filets sont placés dans des zones propices à la capture des chauves-souris : coupe-feux, chemins, ruisseaux, lisières, mares intra-forestières, sous-bois sans végétation de sous-étage, etc.

Une fois installés, les filets sont inspectés régulièrement pour repérer d'éventuelles captures. Les chauves-souris capturées sont alors démaillées avec précaution par un opérateur expérimenté, muni de gants. Sur certains sites, un leurre acoustique est utilisé pour augmenter les chances de capture de certaines espèces, comme les noctules, qui volent généralement à plus haute altitude.

Table 1 : Liste des sites de captures, avec code et coordonnées (WGS84)

Site	Code	Latitude	Longitude
Fagne de la Falgaude	FAL	50,068710	5,406680
Prairies de la Masblette	PRA	50,082219	5,348754
Etang de Bilaude	BIL	50,080441	5,413931
Caillebotis du Rouge Poncé	CAI	50,074232	5,415680
Gué Moricy	GUE	50,075980	5,359160
Pied de Boeuf	PDB	50,074456	5,392253
Nouvelle mare	NMA	50,083148	5,377657
Cabane Marchal	CAB	50,08796	5,34133
Fagne Massa	FMA	50,090326	5,431694
Barrage des castors	BCA	50,079471	5,418600
Mare aux tritons	TRI	50,082705	5,403502
Priesse	PRI	50,093070	5,406660
Hêtre au corbeau	НСО	50,081876	5,364895
Arboretum	ARB	50,080112	5,346920
Fourneau Saint- Michel	FSM	50,084350	5,340395
Chemin de la Halle	HAL	50,096717	5,377586

Figure 1 : Emplacements des sites de captures au sein du massif forestier de Saint-Michel-Freyr

Figure 2 : Prise au filet

BIOMÉTRIE

Chaque chauve-souris capturée est identifiée au niveau de l'espèce, notamment grâce à des mesures telles que la longueur de l'avant-bras et des doigts (3e et 5e). Les caractéristiques biométriques liées au sexe, à l'âge, à l'état reproductif et au poids sont également relevées. Pour les mâles, l'état sexuel est évalué selon la taille des testicules et des épididymes, ainsi que leur couleur. Chez les femelles, l'état sexuel est déterminé en fonction de l'examen général et de l'état des mamelles, qui varient selon l'allaitement des jeunes. Enfin, la présence de parasites éventuels est notée. Les détails des individus capturés et de leurs caractéristiques sont précisés en annexe de ce rapport.

SUIVI DES INDIVIDUS PAR TÉLÉMÉTRIE

Certains individus sont équipés d'émetteurs radio. Le choix des animaux équipés dépend des opportunités liées aux captures, qui sont par nature imprévisibles. Bien qu'une attention particulière soit portée aux murins forestiers, qui se réfugient dans les cavités d'arbres, toutes les espèces peuvent être suivies, afin de maximiser la diversité des espèces étudiées. Seuls les individus en bonne santé ou non-gestants sont sélectionnés pour la pose de l'émetteur.

Les animaux choisis sont équipés d'émetteurs radios Very High Frequency (VHF) de 0,29 g (modèle G29D14/V5 - Plecotus GmbH). Toutefois, en raison de leur petite taille, des émetteurs de 0,24 g furent utilisés pour les individus de Myotis alcathoe. Ces émetteurs sont fixés avec une colle chirurgicale, directement sur la fourrure de l'animal, entre ses omoplates. Ils fonctionnent avec une puissance d'émission d'environ 200 µW, à un rythme de 60 pulsations par minute, sur une

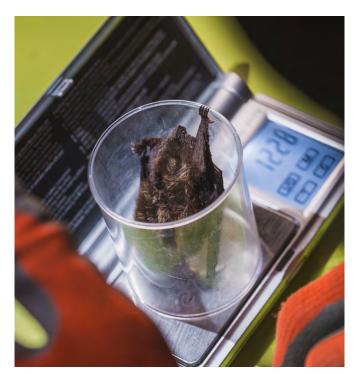


Figure 3 : Etape de la pesée

fréquence proche de 150 MHz. Dans cette configuration, les émetteurs ont une durée de vie théorique moyenne d'environ 14 jours.

SUIVI DES INDIVIDUS

Immédiatement après le relâcher, un premier suivi par radiopistage est effectué pour identifier les zones de chasse et déterminer l'azimut de la direction prise par l'animal. Le lendemain, une prospection en journée est réalisée pour localiser l'arbre qui abrite l'individu ou, le cas échéant, la colonie. Un numéro d'identification est alors attribué à chaque gîte. Dans le cas où le gîte est un arbre, l'essence, l'état et la circonférence à une hauteur de 150 centimètres sont enregistrés.

Au cours de la campagne de suivi, les arbres-gîtes déjà identifiés sont régulièrement revisités en journée pour vérifier si les individus marqués s'y trouvent toujours.

En complément de la localisation des arbres-gîtes, plusieurs comptages en émergence sont réalisés en début de soirée pour estimer visuellement le nombre d'individus occupant l'arbre et évaluer la taille des colonies lors de la sortie du gîte.

SUIVI DES INTERACTIONS

Une fois les arbres-gîtes identifiés, un suivi par piège photographique est mis en place le plus rapidement possible. L'appareil est installé sur un arbre en vis-à-vis de l'arbre-gîte, et surveille la base de celui-ci. L'objectif consiste à détecter d'éventuelles interactions entre la colonie et des espèces susceptibles de grimper à l'arbre, tels qu'un dérangement ou une prédation.

Figure 4 : Localisation d'un arbre gîte par télémétrie

Un enregistreur acoustique (Song Meter Mini Bat – Wildlife Acoustics) est également installé à proximité directe de l'arbre. Cet enregistreur permet de détecter les pics d'activité acoustique lors de l'émergence en soirée et du retour au gîte au petit matin. Ces données servent à mieux comprendre le rythme d'activité nocturne des espèces étudiées et à confirmer la présence de la colonie en enregistrant le temps passé au gîte.

Logiciels

Les analyses et représentations graphiques sont réalisées avec Python, en utilisant les packages Pandas, Geopandas et Matplotlib.

AUTORISATIONS

La capture et le pistage des chauves-souris sont effectués conformément à l'arrêté du Gouvernement wallon du 24 juillet 2003, qui définit les modalités de récolte et d'analyse des données biologiques. Cet arrêté autorise le personnel du Département de l'Étude du Milieu Naturel et Agricole (SPW-DEMNA) à déroger aux interdictions de capture et de manipulation des espèces animales visées par la loi du 12 juillet 1973 sur la conservation de la Nature.

Natagora, via le pôle Plecotus, dispose pour cette étude d'une dérogation (2023-RS-24) pour la capture des chauves-souris dans le cadre des plans d'actions du projet Life B4B, en vue d'étudier leur dispersion par télémétrie.

RÉSULTATS

EFFORT DE CAPTURE

16 sites différents sont échantillonnés au cours de 18 séances de capture menées sur 6 nuits consécutives, du 5 au 10 juillet 2024 (table 2).

Les sites NMA et PRA sont échantillonnés à deux reprises au cours de la campagne.

Au total, 67 individus, représentant 12 espèces différentes, sont capturés. Parmi tous les sites, la nuit du 10 juillet s'avère particulièrement productive avec la capture de 30 individus, ce qui représente 45 % de l'effectif total. Ces individus appartiennent à 7 espèces différentes. Cette nuit-là, 17 individus sont capturés à l'Arboretum. La séance menée sur le site de la Halle, le même soir, permet de capturer la plus

grande diversité, avec 5 espèces différentes. En revanche, trois séances ne donnent aucune prise : le 5 juillet au site BIL, le 6 juillet au site PDB et le 7 juillet au site FMA.

Pipistrellus pipistrellus est l'espèce la plus représentée, avec 27 individus capturés, répartis sur 7 sites différents. En deuxième position, on trouve Nyctalus leisleri, avec 12 individus. Ensemble, ces deux espèces représentent 58 % du total des captures.

Deux pipistrelles échappées pendant la manipulation ne sont identifiées qu'au niveau du genre et ne peuvent être attribuées avec certitude à l'une des espèces présentes en Wallonie. Il est toutefois très probable qu'elles appartiennent à Pipistrellus pipistrellus et sont comptabilisées comme tels.

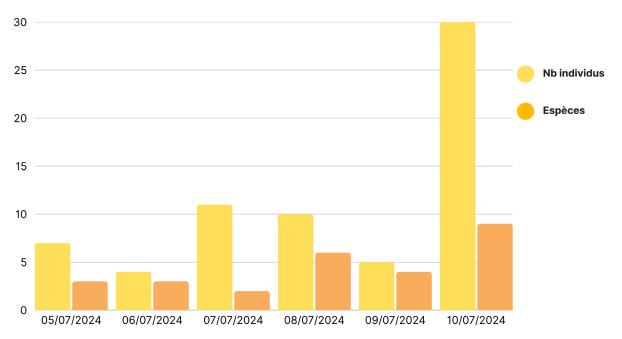


Figure 5 : Effectifs et nombre d'espèces capturés par jour

Table 2 : Récapitulatif des sites échantillonnés avec effectifs de capture (NB : les codes espèces se réfèrent à la table 3)

Site	Date	N	Espèces
FAL	5/7/2024	3	Myonat : 2, Myobra : 1
DDA	5/7/2024	4	Pippip : 3, Myobra : 1
PRA	10/7/2024	3	Myobra : 1, Myodau : 1, Pippip : 1
BIL	5/7/2024	0	/
CAI	6/7/2024	3	Myobec : 1, Myonat : 1, Pippip : 1
GUE	6/7/2024	1	Pippip : 1
PDB	6/7/2024	0	/
NIAAA	7/7/2024	9	Nyclei : 7, Pippip : 2
NMA	9/7/2024	2	Myonat : 1, Pippip : 1
CAB	7/7/2024	2	Pippip: 2
FMA	7/7/2024	0	/
ВСА	8/7/2024	6	Pippip: 3, Myonat: 2, Pipnat: 1
TRI	8/7/2024	2	Rhifer : 1, Pleaur : 1
PRI	8/7/2024	2	Pleaur : 1, Pipsp : 1
НСО	9/7/2024	1	Myonat : 1
FSM	9/7/2024	2	Myoalc : 1, Pipsp : 1
ARB	10/7/2024	17	Pippip : 13, Nyclei : 2, Myoalc : 1, Myobra : 1
HAL	10/7/2024	10	Nyclei : 3, Pleaur : 4, Myomyo : 1, Myonat : 1, Pleaus : 1

Table 3 : Effectifs, sexe et nombre de sites concernés par la capture de chaque espèce

Nom latin	Code	N	Ration F/M	Sites
Pipistrellus pipistrellus	Pippip	29	7/21*	7
Nyctalus leisleri	Nyclei	12	10/2	3
Myotis nattereri	Myonat	8	2/6	6
Plecotus auritus	Pleaur	6	1/5	3
Myotis brandtii	Myobra	4	2/2	3
Myotis alcathoe	Myoalc	2	0/2	2
Myotis bechsteinii	Myobec	1	0/1	1
Myotis daubentonii	Myodau	1	1/0	1
Myotis myotis	Myomyo	1	0/1	1
Pipistrellus nathusii	Pipnat	1	1/0	1
Plecotus austriacus	Pleaus	1	0/1	1
Rhinolophus ferrumequinum	Rhifer	1	1/0	1

^{*} Une pipistrelle commune non-sexée

STADE ET SEX RATIO

À l'exception de deux juvéniles (un mâle Pipistrellus sp. et une femelle Nyctalus leisleri), toutes les chauves-souris capturées sont adultes.

En général, un déséquilibre du sex-ratio en faveur des mâles est observé (42 mâles pour 25 femelles). Parmi les femelles, 10 ment dans le même filet.

MARQUAGE

Au total, 29 individus (13 femelles et 16 mâles) appartenant à 9 espèces différentes sont équipés d'émetteurs VHF (Table 4). À chaque individu est assigné un identifiant unique, qui comprend l'information de l'espèce, du sexe et de la fréquence de l'émetteur. Exemple : MalcM272 pour le murin d'Alcathoe mâle 150.272 kHz.

Table 4 : Nombre, sexe et fréquence radio des individus équipés d'un émetteur VHF

Code	Sexe	Fréquence de l'émetteur (150 MHz + code en KHz)
Myotis nattereri	Mâle : 5 Femelle : 2	197, 303, 236, 014, 274 304, 256
Nyctalus leisleri	Mâle : 2 Femelle : 4	004, 037 050, 064, 097, 286
Myotis brandtii	Mâle : 2 Femelle : 1	170, 200 287
Pipistrellus pipistrellus	Femelle : 3	254, 083, 207
Myotis alcathoe	Mâle : 2	184, 272
Plecotus auritus	Mâle : 4 Femelle : 1	137, 196, 101, 112 125
Myotis bechsteinii	Mâle : 1	235
Pipistrellus nathusii	Femelle : 1	186
Rhinolophus ferrumequinum	Femelle : 1	303

Figure 6 : Pose d'une balise sur un Murin de Brandt

RELOCALISATION DES INDIVIDUS

Le suivi des individus se déroule sur la même période que la campagne de marquage. Les données ci-dessous détaillent les relocalisations successives des individus suivis par télémétrie. Les caractéristiques des gîtes ainsi que la cartographie sont respectivement détaillées en Annexe 1 et 2 de ce rapport

Myotis nattereri

Table 5 : Historique des détections au niveau des arbres-gîtes pour les individus de Myotis nattereri suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
M274	10/7/2024	Hêtre vivant	50.079290 5.372694	15
M407	6/7/2024	Hêtre vivant	50.069429 5.409739	2
M197	10/7/2024	Hêtre vivant	50.069358 5.409977	1
M236	9/7/2024	Hêtre vivant	50.073507 5.418362	6
14202	6/7/2024	Hêtre vivant	50.072526 5.401100	3
M303	7/7/2024	Hêtre vivant	50.072651 5.401120	4
M014	/	/	/	/
F156	9/7/2024	Hêtre vivant	50.081903,	17
F304	7/7/2024	Hêtre vivant	5.420729	17

Un Murin de Natterer mâle, **MnatM274**, capturé le 9 juillet 2024 sur le site HCO, est retrouvé le lendemain dans un hêtre vivant, sain et de grande circonférence (C150=350 cm), situé à 628 mètres de son lieu de capture.

Le mâle **MnatM197**, capturé le 6 juillet 2024 sur le site FAL, est retrouvé le jour suivant dans un hêtre vivant en dépérissement. Le 10 juillet 2024, cet individu est détecté dans un autre arbre, à quelques mètres de son premier gîte. Le 11 juillet 2024, l'animal (ou son émetteur) est toujours présent dans ce même arbre-gîte.

Le mâle **MnatM236**, capturé le 8 juillet 2024 sur le site BCA, est localisé le jour suivant dans un grand hêtre vivant en bordure d'une boulaie tourbeuse.

Le mâle **MnatM014**, capturé le 9 juillet 2024 au site NMA, n'a jamais été retrouvé au cours de l'étude.

Les deux femelles murins de Natterer, **MnatF304** et **MnatF256**, capturées respectivement le 6 juillet 2024 au site CAI et le 8 juillet 2024 au site BCA, sont relocalisées dans le même arbre : un hêtre vivant et sain (C150=200 cm), situé près du parc à grumes. Ces individus font partie d'une colonie de 18 individus, dénombrée lors d'un comptage en émergence. Le 11 juillet 2024, MnatF256 est encore présente dans le gîte, tandis que MnatF304 n'est plus détectable.

Nyctalus leisleri

Table 6 : Historique des détections au niveau des arbres-gîtes pour les individus de *Nyctalus leisleri* suivis par télémétrie.

ID	Date	Gîte	Coordonnées	N° Gîte
M004	11/7/2024	Frêne vivant	50.077578 5.354967	11
M004	17/7/2024	Chêne vivant	50.079906 5.359164	16
M037	/	/	/	/
F0F0	8/7/2024	Chêne vivant	50.07765 5.37633	12
F050	9/7/2024	Chêne vivant	50.07767 5.38122	13
F06/	8/7/2024	Chêne vivant	50.07651 5.37652	7
F064	9/7/2024	Chêne vivant	50.07767 5.38122	13
F097	/	/	/	/
5005	11/7/2024	Frêne vivant	50.091701 5.344954	28
F286	13/7/2024	Chêne vivant	50.104941 5.370400	25

L'arbre-gîte du mâle **NleiM004**, capturé le 10 juillet 2024 sur le site ARB, est identifié le lendemain dans un frêne mort, présentant un bourrelet cicatriciel à hauteur de la première branche. Son arbre-gîte se trouve à quelques mètres de celui d'un murin d'Alcathoe, dans une zone de suintement le long de la Masblette. Le 17 juillet 2024, cet individu est ensuite localisé dans un autre chêne vivant.

L'individu mâle **NleiM037** et la femelle **NleiF097** ne sont pas relocalisés au cours de l'étude.

La femelle **NleiF050**, capturée le 7 juillet 2024 au site NMA, est retrouvée le lendemain dans un chêne vivant, avec une branche morte apparente. Elle migre ensuite le 9 juillet 2024 vers un grand chêne (C150=248 cm) situé à proximité d'un mirador de chasse. Le 15 juillet 2024, cet individu est toujours détecté près de l'arbre A.

La femelle **NleiF064**, capturée la même nuit et sur le même site, est retrouvée le lendemain dans un chêne vivant (C150=190 cm) avec une cavité visible aux deux-tiers de l'arbre. Le 10 juillet 2024, l'individu rejoint NleiF050 dans l'arbre B.

L'individu **NleiF286**, capturé le 10 juillet 2024 au site HAL, est identifié le lendemain dans un frêne mort (C150=180 cm). Un doute subsiste toutefois pour cette localisation, en raison d'une confusion possible avec l'émetteur de MbraM287. Elle est de nouveau retrouvée le 13 juillet 2024, cette fois dans un nouvel arbre-gîte, un chêne vivant (C150=220 cm).

Les trois femelles relocalisées appartiennent à deux groupes différents situés à plus de 3 km de distance. Parmi les 8 arbres-gîtes de noctules de Leisler identifiés, 6 sont des chênes vivants.

Rhinolophus ferrumequinum

Table 7 : Historique des détections au niveau des arbres-gîtes pour l'individu de Rhinolophus ferrumequinum suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
M004	11/7/2024	Grotte	50.11723, 5.19914	29

La femelle **RhifF303**, capturée le 8 juillet 2024 sur le site TRI, est localisée le 11 juillet au lieu-dit « Trou d'en Faule », dans le domaine des grottes de Han, à 15 km du site de capture. Avant cela, 5 contacts ont été obtenus entre 00h30 et 3h00 au niveau de la rue de Masbourg à Nassogne, ce qui permet de reconstituer une partie de son itinéraire.

Myotis alcathoe

Table 8 : Historique des détections au niveau des arbres-gîtes pour les individus de *Myotis alcathoe* suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
M184	10/7/2024	Hêtre vivant	50.083827, 5.342938	18
	11/7/2024	Frêne mort	50.087735, 5.341401	22
M272	11/7/2024	Frêne mort	50.077321, 5.354324	9
	11/7/2024	Frêne mort	50.077527, 5.354229	10

Le premier murin d'Alcathoe, **MalcM184**, capturé le 9 juillet 2024 sur le site FSM, est relocalisé le lendemain dans un hêtre vivant, situé à 200 mètres. Le jour suivant, cet individu change de gîte et est retrouvé dans un frêne mort attaqué par des scolytes, dont l'écorce est décollée, à 400 mètres de son premier gîte.

Le deuxième, **MalcM272**, capturé le 10/7/2024 sur le site ARB est retrouvé le lendemain dans un frêne dépérissant situé dans une zone humide le long de la Masblette, à environ 600 mètres. L'individu se déplace ensuite dans un frêne mort à une dizaine de mètres, dans lequel il est encore détecté le 17/7/2024.

Figure 7 et 8 : Hêtre vivant (gauche) et frêne mort (droite) servant tous les deux de gîte à MAlcM184

Pipistrellus pipistrellus

Table 9 : Historique des détections au niveau des gîtes pour les individus de *Pipistrellus pipistrellus* suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
F083	8/7/2024	Bâtiment	50.083872, 5.375270	19
F254	6/7/2024	Dâtimaant	F0.000C/C F.22C7/4	27
F207	10/7/2024	Baument	50.089646, 5.336741	24

La femelle **PpipF083**, capturée le 7 juillet 2024 au site NMA, est localisée le lendemain en journée, à 190 mètres de son lieu de capture. Le gîte se trouve au niveau de la maison forestière du Pavillon Saint-Michel, un petit bâtiment utilisé principalement pour le stockage du matériel des agents forestiers. Cette colonie, déjà connue en 2020, est estimée à environ 100 à 150 individus.

Les deux femelles **PpipF254** et **PpipF207**, capturées respectivement le 5 juillet 2024 au site PRA et le 7 juillet 2024 au site CAB, font partie de la même colonie. Elles sont toutes deux retrouvées à l'auberge du Prévost, un bâtiment situé près du Fourneau Saint-Michel, où une colonie déjà connue des chiroptérologues est présente. PpipF207 est encore détectée dans cette colonie le 17 juillet 2024, soit 10 jours après sa capture.

Myotis bechsteinii

Table 10 : Historique des détections au niveau des arbres-gîtes pour l'individu de Myotis bechsteinii suivi par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
Maar	7/7/2024	Bouleau vivant	50.073403, 5.419663	5
M235	10/7/2024	Hêtre vivant	50.073507, 5.418362	6

Le Murin de Bechstein **MBecM235**, capturé le 6/7/2024 au site CAI, est retrouvé le lendemain à 300 mètres dans un bouleau. Le 10/7/2024, l'individu s'était déplacé dans un nouvel arbregîte, un hêtre vivant situé en bordure de boulaie tourbeuse.

Myotis brandtii

Table 11 : Historique des détections au niveau des gîtes pour les individus de Myotis brandtii suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
	6/7/2024	Hêtre mort	50.085708, 5.349222	20
M200	7/7/2024	Hêtre vivant	50.085793, 5.351080	21
	8/7/2024	Bâtiment	50.089510, 5.336478	24
	9/7/2024	Hêtre mort	50.085708, 5.349222	20

Le premier Murin de Brandt mâle, **MBra170**, capturé le 5 juillet 2024 sur le site FAL, est retrouvé le lendemain affaibli et au sol, à proximité immédiate de son lieu de capture. Cet individu est alors emmené en revalidation.

Le second mâle, **MBraM200**, capturé le même jour au site PRA, est localisé le lendemain dans une quille de hêtre. Le 7 juillet, il migre vers un hêtre vivant, étêté, dont la dernière charpentière est morte. Le 8 juillet, son émetteur est détecté dans le grenier de l'auberge du Prévost, au sein du même bâtiment que la colonie de pipistrelles à laquelle appartiennent PpipF207 et PpipF254. Il y est observé lors du comptage en émergence. Le 9 juillet, il est localisé une dernière fois dans une nouvelle quille de hêtre à l'écorce décollée.

La femelle MBraF287 n'est pas retrouvée au cours de l'étude.

Plecotus auritus

Table 12 : Historique des détections au niveau des arbres-gîtes pour les individus de *Plecotus auritus* suivis par télémétrie

ID	Date	Gîte	Coordonnées	N° Gîte
M427	9/7/2024	Hêtre vivant	50.077253, 5.395002	8
M137	10/7/2024	Chêne vivant	50.088550, 5.39820	23
M196	10/7/2024	Chêne vivant	50.0792619, 5.400859	14
M101	11/7/2027	Hêtre vivant	50.0960450,	26
M112	11/7/2024	netre vivant	5.373562	20
F125	11/7/2024	Hêtre vivant	50.096302, 5.3712771	27

Le mâle **PaurM137**, capturé le 8/7/2024 sur le site PRI, est retrouvé le lendemain au niveau d'un hêtre sain (C150=220cm). Le jour suivant, ce même individu migre alors vers un chêne vivant (C150=140cm).

PaurM196, capturé le 8/7/2024 sur le site TRI, est retrouvé le 10/7/2024 dans un grand chêne vivant (C150=310cm).

PaurM101 et **PaurM112**, capturés le 10/7/2024 sur le site HAL, sont retrouvés le lendemain dans le même arbre, au niveau d'un hêtre vivant

La femelle **PaurF125**, capturée le 10/7/2024 sur le site HAL, a été retrouvée le 11/7/2024 au niveau d'un hêtre vivant, dans une zone au sous-bois très dégagé.

Pipistrellus nathusii

Le gîte de **PNatF186**, capturée le 8/7/2024 sur le site BCA, n'est pas retrouvé au cours de l'étude.

COMPTAGES EN ÉMERGENCE

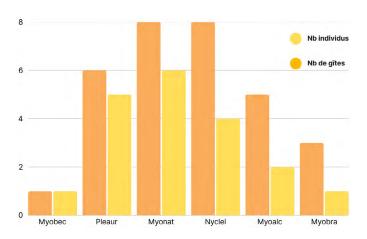
Plusieurs comptages en émergence sont effectués au cours de la campagne afin de comptabiliser le nombre d'individus présents dans les arbres-gîtes. Ceux-ci sont détaillés à la Table 13.

Table 13 : Résultats des comptages par émergence

Date du comptage	N° Gîte	Effectif
6/7/2024	20	Myotis sp. : 3
10/7/2024	24	Pippistrellus pippistrellus : 72 Myotis brandtii : 1
11/7/2024	10	Myotis sp : 2 Pippistrellus sp : 2
13/7/2024	28	Nyctalus leisleri : 16
11/7/2024	13	Nyctalus leisleri : 84
11/7/2024	17	Myotis nattereri : 18
11/7/2024	9	Myotis alcathoe : 2
11/7/2024	22	Myotis alcathoe : 1
11/7/2024	27	Plecotus auritus : 6

Les analyses ultérieures se focalisent sur les espèces ayant été localisées au niveau des gîtes arboricoles. Ceci exclut Pipistrellus pipistrellus, espèce pour laquelle les individus suivis sont retrouvés uniquement sur les gîtes d'origine anthropique, ainsi que Rhinolophus ferrumequinum, retrouvé dans une grotte et dont la distance entre le site de capture et le gîte est très significativement supérieure au reste de notre échantillon.

Nombre d'arbres gîtes par espèces et individus


Si l'on considère uniquement les 6 espèces ayant fréquenté les gîtes arboricoles, les 19 individus de notre échantillon sont identifiés sur un arbre-gîte (n=10), deux (n=6) ou 3 arbres différents (n=3).

Les individus détectés sur 3 arbres-gîtes appartiennent à 3 espèces différentes: Nyctalus leisleri, Myotis alcathoe, Myotis brandtii. Pour chaque espèce suivie par télémétrie, le nombre d'individus suivis et le nombre de gîtes différents identifiés sont repris à la table 14. Il est à noter qu'un même gîte peut être utilisé par plusieurs espèces.

Table 14 : Nombre d'arbres gîtes identifiés et d'individus suivis par espèce

Espèce	Nb d'arbres-gîtes*	Nb d'individus
Myotis nattereri	8	6
Nyctalus leisleri	8	4
Plecotus auritus	6	5
Myotis alcathoe	5	2
Myotis brandtii	3	1
Myotis bechsteinii	1	1
Myotis bechsteinii	1	1

La figure 9 reprend les résultats de ce tableau sous forme graphique, avec les espèces classées en fonction du rapport entre le nombre de gîtes et le nombre d'individus.

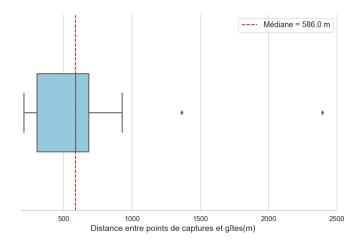


Figure 9 : Nombre d'individus suivis et de gîtes identifiés selon l'espèce suivie par télémétrie

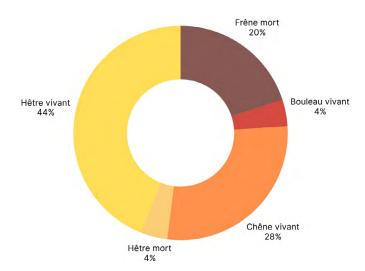
Il est important de mentionner qu'en fonction du jour de marquage, les individus ne font pas l'objet du même nombre de jours de recherche par télémétrie. Par conséquent, la variabilité dans l'effort mis en place pour les retrouver peut induire un biais important. Par ailleurs, l'importante variabilité interspécifique du sex-ratio constitue certainement un autre biais limitant l'interprétation directe de ces résultats.

DISTANCES ENTRE SITES DE CAPTURES ET GÎTES

Pour chacun des 19 individus, la distance entre le point de capture et les différents gîtes fut calculée. Dans le cas où un individu dispose de plusieurs gîtes, la valeur de distance moyenne est retenue.

Figure 10 : Distribution des distances entre le point de capture et le gîte

50% des individus sont capturés à une distance comprise entre 304 et 682 mètres de leurs gîtes. Deux individus (PaurM137 et NleiF286) ont des distances au gîte significativement plus importantes que le reste de l'échantillon, respectivement à 1366m et 2394m.


La forte disparité entre les effectifs des différentes espèces limite la mise en évidence des différences interspécifiques. Il est toutefois probable qu'il existe des stratégies différentes d'utilisation de l'espace et de l'habitat entre les espèces arboricoles.

SYNTHÈSE DES TYPES D'ARBRES-GÎTES

Les arbres-gîtes identifiés au cours de ce suivi appartiennent à 4 essences différentes : Le hêtre (Fagus sylvatica), le chêne (Quercus sp.) , le frêne (Fraxinus excelsior) et le bouleau (Betula sp.). Toutes essences confondues, 76% des arbresgîtes identifiés sont des arbres vivants et ceux-ci comprennent l'ensemble des 7 colonies de femelles.

Table 15 : Distribution des gîtes selon l'essence et l'état de l'arbre

Essence	Vivant	Mort
Fagus sylvatica	12	1
Quercus sp.	7	0
Betula sp.	1	0
Fraxinus excelsior	0	5
TOTAL	20	6

Figure 11 : Répartition des gîtes selon l'essence et l'état de l'arbre

La plupart des arbres-gîtes sont situés dans des compartiments forestiers, en futaie pure (n=19) ou dans des structures mélangées (n=6). Un seul arbre-gîte est situé dans un milieu semi-ouvert, dans une boulaie tourbeuse.

SURVEILLANCE DES ARBRES-GÎTES PAR PIÈGES PHOTOGRAPHIQUES

Dès leur identification sur le terrain, 16 arbres-gîtes sont surveillés au moyen de pièges photographiques, sur une durée moyenne de 18 jours (min. 9 – max. 21). Ceci représente au total un effort cumulé de 296 nuits de surveillance en considérant l'ensemble des arbres.

12 espèces animales, parmi lesquelles 9 mammifères, sont identifiées sur les 146 séquences collectées par les pièges photographiques.

Table 16 : Nombre de données relatives aux espèces observées par les pièges photographiques

47 31
31
30
10
8
6
5
4
2
1
1
1

Figure 12 : Raton laveur marquant un intérêt pour l'arbre 21, utilisé par MyobraM200.

Figure 13 : Raton laveur en descente probable de l'arbre 17, abritant la colonie de murins de Natterer.

L'analyse des observations issues des pièges photographiques révèle qu'au cours de la période de suivi, le raton laveur est observé à 10 reprises à proximité directe de 5 arbres hébergeant les chauves-souris. Parmi ceux-ci, 4 arbres font l'objet d'une forme d'intérêt de la part du raton laveur, à savoir les arbresgîtes 4, 17, 18 et 21. Cet intérêt se manifeste par une pause au pied de l'arbre, avec un comportement de reniflement de la base du tronc. Aucune observation ne démontre toutefois explicitement un comportement de grimpe sur l'arbre.

Cependant, une vidéo du 26/7/2024 en début de soirée suggère un raton laveur en position de descente probable depuis l'arbre identifié comme hébergeant la colonie de murins de Natterer (arbre 17). Toutefois le début de la séquence est tronqué par le délai de déclenchement et il n'est pas clair si l'individu descend réellement de l'arbre ou s'il effectue un comportement de marquage. Le comportement de descente est toutefois probable, car l'appareil aurait théoriquement dû déclencher dans un délai plus bref si le raton arrivait dans le champ latéral de l'objectif. Les données acoustiques ne permettent pas de confirmer un éventuel dérangement de la colonie.

En ce qui concerne les autres mammifères susceptibles d'interagir avec les arbres à cavités, Sciurus vulgaris est observé à 8 reprises avec des comportements de grimpe sur les arbres. La martre des pins et le chat forestier sont observés à respectivement 6 et 1 occasions mais, contrairement au raton laveur, ne manifestent aucun intérêt pour les arbres suivis, occupés par des chauves-souris.

BILAN DES CAPTURES

La semaine des captures de début juillet 2024 est marquée par une succession de nuits fraîches peu favorables à la capture des chiroptères. Ceci pourrait expliquer la relative pauvreté des captures lors de cette campagne. Selon notre expérience, le nombre d'individus capturés en milieu forestier, sans leurre acoustique et en dehors de points d'intérêt comme les plans d'eau ou les entrées de gîtes est généralement assez faible.

Plusieurs espèces dont la présence est connue dans le massif ne sont pas capturées. C'est notamment le cas de la sérotine commune (*Eptesicus serotinus*) pourtant bien représentée dans les données acoustiques collectées entre mars et juillet 2024. C'est aussi le cas du grand murin et du murin à moustaches (*Myotis mystacinus*) tous deux présents sur le massif. Nous noterons que pour le murin à moustaches, des incertitudes liées aux difficultés d'identification par la méthode acoustique peuvent avoir conduit à une surestimation de sa présence locale. La barbastelle a été identifiée sur le massif par la méthode acoustique mais elle reste extrêmement rare et une capture aurait été plutôt improbable.

A l'inverse, la relative rareté du murin de Bechstein dans nos filets est plus surprenante étant donné la présence de colonies de reproduction dans des conditions similaires du côté de Masbourg, Mormont et Daverdisse. La faiblesse de l'échantillonnage constitue une explication probable à cette observation.

SUCCÈS DU SUIVI TÉLÉMÉTRIQUE

D'un point de vue méthodologique, le suivi télémétrique démontre sa pertinence technique. En effet, 29 gîtes différents sont identifiés, parmi lesquels 26 gîtes arboricoles, dont 7 fréquentés par des colonies de femelles. Seuls 4 chauvessouris sur les 29 individus équipés d'un émetteur ne sont pas relocalisés au sein du massif forestier. A ce stade, il n'est pas possible de savoir si ces derniers sont partis hors de la zone d'étude, si la balise a rapidement été défectueuse après la pose, ou si un couvert végétal trop important ou un relief accidenté ont limité la détection. Cette situation peut par exemple se produire lorsque la chauve-souris se trouve dans un gîte situé dans un fond de vallée. Dans le cas du murin de Brandt femelle MbraF287, la similitude de fréquence de son émetteur avec celui d'une noctule de Leisler (NleiF286) génère des problèmes de relocalisation et une confusion possible entre les individus. Il n'est donc pas exclu que le gîte situé dans le frêne mort situé près de la Diglette (arbre 26), attribué à NleiF286 soit en réalité imputable à MbraF287. Ceci pourrait notamment expliquer la distance importante entre le site de capture de NleiF286 et l'un de ses gîtes supposés.

La capture, la manipulation des individus et l'équipement ne connaissent aucun accroc technique. La seule exception est celle d'un murin de Brandt involontairement blessé lors du processus délicat de démaillage. L'animal est toutefois récupéré et emmené dans un centre de revalidation des espèces animales vivant à l'état sauvage (CREAVES). Il sera relâché un mois plus tard à l'endroit précis où il a été capturé.

DIVERSITÉ DES ESPÈCES

Les pipistrelles communes sont l'espèce la plus représentée dans les filets, tant en termes d'effectif qu'en termes de distribution au sein des différents sites. Ceci n'est pas une surprise car cette espèce est fréquente dans toute la Wallonie. Lors de la campagne d'enregistrement acoustique réalisée en préalable de ce projet, elle représente également l'espèce majoritaire. Les gîtes de femelles localisés confirment l'attrait des gîtes anthropiques pour cette espèce. Quelques individus non-marqués sont toutefois repérés lors d'un comptage en émergence au niveau d'un arbre-gîte.

Figure 14 : Le Murin de Brandt après revalidation au CREAVES de Namur

UTILISATION DES ARBRES-GÎTES

Les données récoltées permettent de lever une partie du voile sur les arbres utilisés par les chiroptères au sein de ce massif forestier. Le premier constat est que les arbres à cavités recensés appartiennent à des essences variées : hêtres, frênes, chênes, bouleaux, etc. D'autre part, les arbres vivants semblent davantage utilisés que les arbres morts. Ceci laisse supposer que les chauves-souris sont capables d'exploiter des gîtes de multiples origines : trous de pics, gélivures, fentes créées par la foudre ou la chaleur, chancres, branches mortes, écorces décollées, etc. Certaines des cavités potentiellement utilisées sont indiscernables du sol, et pourraient ne pas être repérées lors du diagnostic de désignation des arbres à haute valeur biologique pour les chiroptères sur base de simples observations dendrologiques. Aucun des arbresgîtes identifiés ne correspondait d'ailleurs à un arbre à cavité d'intérêt biologique préalablement identifié lors de l'inventaire réalisé conjointement entre le DNF et le Bureau d'études Ecofirst. Cet important travail avait pourtant permis d'identifier 468 arbres d'intérêt biologique sur la zone d'étude.

Dans l'ensemble, les hêtres vivants constituent l'essence la mieux représentée dans les arbres-gîtes identifiés. Il est toutefois difficile de savoir si cette prédominance n'est pas proportionnelle à l'abondance de cette essence sur le massif forestier. Les colonies découvertes (Nyctalus leisleri, Plecotus auritus, Myotis nattereri) sont toutes situées dans des arbres vivants (chênes et hêtres) ce qui indique une sélection préférentielle des arbres vivants. En effet, ceux-ci offrent à la fois une plus grande stabilité temporelle mais aussi une meilleure inertie thermique.

Les relocalisations successives permettent de constater à plusieurs reprises que les individus peuvent utiliser différents gîtes, généralement assez proches les uns des autres. Ce mécanisme d'occupation successive de différents microhabitats est bien documenté dans la littérature scientifique, et peut s'expliquer par un mécanisme de fission-fusion des colonies et l'utilisation d'un réseau de gîtes, ou encore par des déménagements réguliers d'une même colonie, dans le but de réduire la pression parasitaire. Notre suivi étant relativement court, nous ne pouvons pas exclure un biais comportemental lié à un stress postérieur à la capture et à la manipulation des individus. Certaines observations pourraient indiquer que le stress post-capture peut pousser certains individus à sélectionner rapidement un gîte non-optimal. C'est le cas par exemple pour les noctules qui ont utilisé un frêne mort.

Le suivi met en évidence des observations ponctuelles intéressantes. Ainsi, un murin de Brandt mâle utilise différents types de gîtes, autant des arbres vivants ou morts, ainsi que le même bâtiment qu'une colonie de pipistrelles communes femelles, et occupe successivement le même arbre-gîte qu'un murin de Natterer mâle. De même, deux murins d'Alcathoe ont été observés en émergence d'un frêne mort avec deux pipistrelles. Ces observations confirment le phénomène de cohabitation interspécifique, déjà observé entre le murin d'Alcathoe et d'autres espèces telles que la noctule commune ou l'oreillard roux. De même, des colonies mixtes entre des murins de Brandt et des murins à moustaches, ou avec des pipistrelles pygmées ou communes ont déjà été observées par le passé.

DÉCOUVERTES REMARQUABLES

L'identification de deux groupes de noctules de Leisler constitue une découverte importante à l'échelle régionale. Si l'espèce était déjà connue pour bien présente dans le massif, aucune colonie n'avait été identifiée à ce jour. Les deux groupes identifiés au cours de ce projet représentent potentiellement les 3e et 4e colonies wallonnes découvertes à ce jour. En effet, une colonie était historiquement connue dans le Camp militaire de Lagland (53 km), et une autre du côté de Lessines (130 km). Le premier groupe situé dans l'arbre 29 a été estimé à 16 individus, l'effectif de l'autre groupe situé dans l'arbre 14 est estimé à 84 individus. La littérature indique que les nurseries en cavités arboricoles comptent habituellement de 20 à 40 individus, tandis que les plus importantes en comptent près de 100 [8, 9]. A ce stade toutefois, il n'est pas possible de savoir si ces deux

Figure 15: Capture du Grand Rhinolophe

groupes sont bien deux colonies différentes ou s'il s'agit d'une même colonie temporairement subdivisée. La localisation et la nature des arbres-gîtes occupés par les noctules, le plus souvent des gros chênes dominants situés en versant sud, en rupture de pente et en bordure de plateau n'est sans doute pas anodine. L'échantillon est malheureusement trop léger pour proposer des conclusions définitives.

La capture d'une femelle de grand rhinolophe constitue l'une des découvertes intéressantes du projet. La présence du grand rhinolophe dans le massif se résumait jusqu'ici à quelques données acoustiques. L'espèce n'avait pas été détectée lors de l'inventaire de 2020 [10]. Cette nouvelle preuve de présence vient confirmer le grand intérêt biologique de ce massif forestier. La femelle suivie par télémétrie est relocalisée avec son jeune et plusieurs autres individus de la même espèce, dans une cavité naturelle située à 15 kilomètres de son lieu de capture. Si cette espèce est habituellement renseignée avec un rayon moyen équivalent de 5 kilomètres [9] ou un domaine vital de 6,7 km2 [8], il existe déjà des données démontrant que des femelles allaitantes peuvent faire plus de 45 kilomètres en une nuit.

La découverte d'un gîte de reproduction pour la pipistrelle de Nathusius aurait été une première en Wallonie si l'individu équipé avait été retrouvé.

INTERACTIONS AVEC LES ARBRES-GÎTES

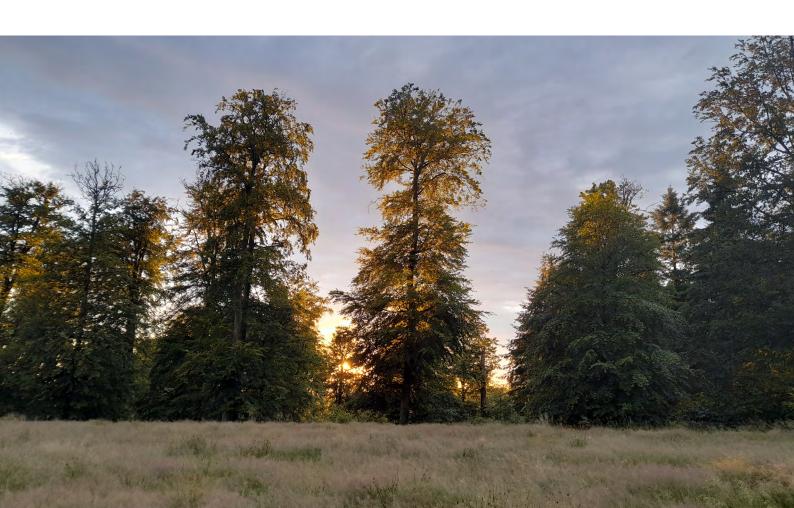
Malgré une suspicion ne pouvant constituer une preuve formelle, les données collectées lors de ce suivi par piège photographique ne permettent pas de tirer de conclusion par rapport à une quelconque interaction écologique entre le raton laveur et les chauves-souris. Toutefois, un comportement d'intérêt observé à 5 reprises (sur 10 séquences) envers les arbres-gîtes observés nous incite à rester prudents dans nos conclusions. Il est à noter que l'écureuil roux est observé à 8 reprises sur les arbres-gîtes. Si cette espèce peut occasionnellement prédater des nichées d'oiseaux [11], la littérature scientifique ne suggère pas d'interactions écologiques négatives avec les chauves-souris.

Cette collecte de données par pièges photographiques se voulait résolument exploratoire, et en raison du temps de suivi très court des arbres à cavité imposé par le timing de l'étude, l'absence de résultats concluants n'est pas une surprise. Les données permettent néanmoins de compléter les observations du protocole de suivi de la faune des arbres à cavités par pièges photographiques, démarré en février 2024.

Les données collectées dans le cadre de nos recherches sur la thématique du raton laveur, nous laissent supposer que dans le cas du massif forestier de Saint-Michel-Freyr, l'impact de cette espèce sur les chiroptères pourrait être relativement limité pour plusieurs raisons.

Premièrement, la très grande disponibilité en dendromicrohabitats liée à la gestion sylvicole particulière de ce territoire permettrait de diminuer le nombre d'interactions via un phénomène de dilution de la pression potentielle que peut effectuer cette espèce exotique envahissante. La vulnérabilité des chiroptères pourrait donc être exacerbée par un manque de disponibilité en micro-habitats dans l'environnement [6]. Par conséquent, des mesures de gestion sylvicoles trop intensives pourraient potentiellement influencer directement la prédation envers des espèces gîtant en cavités arboricoles.

D'autre part, les données récoltées au moyen de pièges photographiques dans le cadre d'un projet de recherche sur l'attractivité des arbres d'intérêt biologique, suggèrent que la présence de cavités de taille moyenne, visibles depuis le sol, pourraient agir comme un signal stimulant le comportement exploratoire des arbres par le raton laveur [12]. Les chiroptères étant capables d'utiliser des gîtes beaucoup plus discrets, situés plus hauts dans les arbres, et dans des arbres sains, leur présence serait plus difficilement décelable. Par ailleurs, il semblerait que les colonies de reproduction aient une préférence d'occupation pour les gîtes les plus hauts possibles par rapport au niveau du sol [1].


Par ailleurs, contrairement à la plupart des oiseaux nicheurs fréquentant les cavités arboricoles, le rythme d'activité nocturne des chiroptères les rend actifs dans la même période que le raton laveur, réduisant davantage les probabilités d'interaction d'un raton laveur avec une colonie en phase de repos. Enfin, la dynamique de fission-fusion des colonies et l'utilisation de réseaux de gîtes rendent assez imprévisible leur présence dans un gîte donné. Toutefois, un effet saisonnier important n'est pas à exclure. En effet, les colonies de chiroptères pourraient se révéler bien plus vulnérables en période d'hibernation, d'autant plus que les ressources alimentaires rares pourraient pousser le raton laveur vers une consommation accrue de ce type de proies. Notre étude n'aborde cependant pas ce risque, qui est sans doute plus important encore dans les lieux d'hibernation tels que les grottes ou les cavités souterraines.

Il est également nécessaire de s'interroger sur la vulnérabilité des chauves-souris qui fréquentent les nichoirs pour chiroptères placés en milieu forestier. A l'instar des nichoirs destinés aux chouettes hulottes [13], ces dispositifs pourraient finalement se révéler être des pièges écologiques s'ils ne disposent pas de mesures de protection spécifiques contre la prédation du raton laveur.

Une estimation effectuée sur la zone d'étude en 2020 avançait une densité en ratons laveurs comprise entre 2,19 et 3,39 individus adultes par km2 [14]. Cet ordre de grandeur, estimé par pièges photographiques, semble validé par de nouvelles estimations réalisées sur base des résultats de capture de 2024 (Watthez, données non publiées, 2024). Comparativement à ce qui peut être observé ailleurs en Wallonie, notamment à proximité des zones péri-urbaines,

cette densité serait relativement faible. Les cas de prédation par le raton laveur sur certaines espèces peuvent donc apparaître comme anecdotiques dans un contexte donné. Cependant, à mesure que la densité de population augmente, ces comportements pourraient devenir significativement plus fréquents, et exercer une pression notable sur les ressources. On peut rationnellement penser qu'en présence de ressources limitées, la concurrence intra-spécifique favorise l'exploitation de ressources négligées, ou moins abondantes dans l'environnement. De plus, la probabilité d'interactions avec des proies, même fortuites, augmente avec le nombre de prédateurs potentiels dans la zone. De plus, les capacités cognitives de cette espèce, encore récemment démontrées [15], nous laissent penser qu'un phénomène d'apprentissage ou de spécialisation de certains individus n'est pas à exclure.

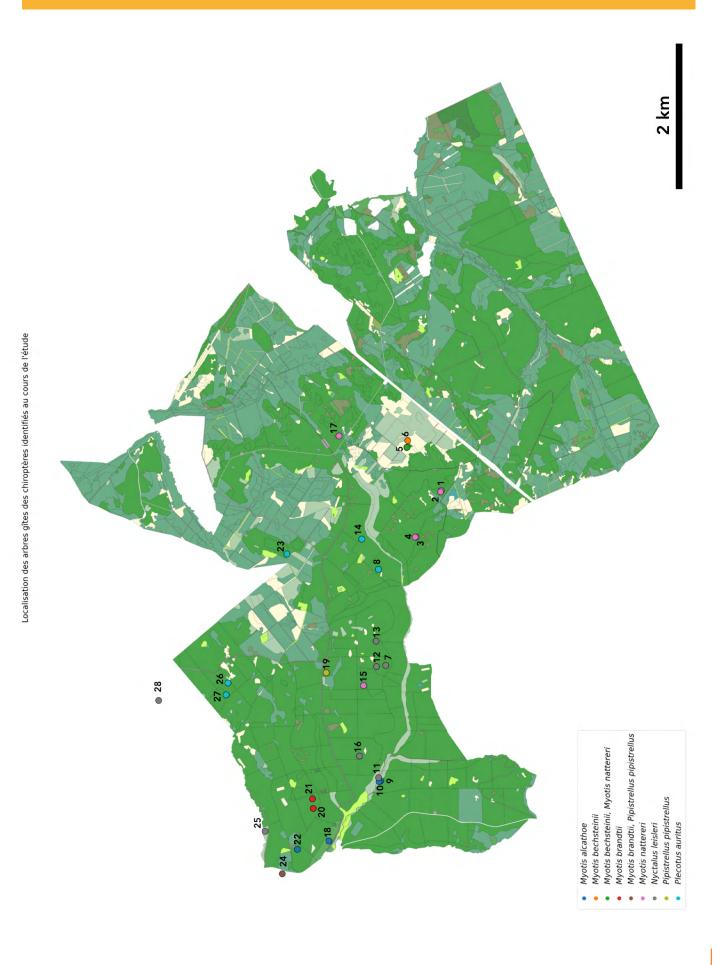
D'autres pistes sont possibles pour objectiver les connaissances relatives à l'impact du raton sur les chiroptères. Un projet d'analyse des matières fécales par ADN metabarcoding est en cours, et devrait permettre de dresser une première liste d'espèces animales présentes dans le régime alimentaire de la population de raton laveur capturée à Saint-Michel-Freyr. Ces données permettront entre autres de vérifier la présence de traces de chiroptères dans les matières fécales des individus fréquentant le milieu forestier.

CONCLUSIONS

Les nombreuses données collectées au cours de cette campagne consolident significativement les connaissances sur les chauves-souris forestières du massif de Saint-Michel-Freyr. Nos observations confirment à nouveau la haute valeur biologique de ce massif ainsi que la grande diversité d'espèces de chiroptères qui le fréquentent.

Ces observations contribuent à objectiver le succès des efforts de conservation déjà consenti par le cantonnement DNF de Nassogne sur ce territoire depuis de nombreuses années. L'identification de cette première série d'arbres-gîtes permet au Département de la Nature et des Forêts de les désigner comme arbres à préserver. Des analyses plus poussées et d'éventuelles recherches ultérieures permettront de mieux comprendre l'écologie des chauves-souris forestières et à élaborer des mesures de gestion ciblées pour protéger ces espèces vulnérables.

RÉFÉRENCES


- [1] Rotherham, I. (2019). Bat roosts in trees: a guide to identification and Assessment for Tree-Care and Ecology Professionals. Arboricultural Journal, vol. 41, issue 4, pp. 244-245
- [2] Lauer, M., & Tillon, L. (2023). Chauves-souris et forêt, des alliées indispensables. Les guides Hôtes de la forêt CNPF-IDF.
- [3] Tillon, L. (2015). Utilisation des gîtes et des terrains de chasse par les Chiroptères forestiers, propositions de gestion conservatoire (Doctoral dissertation, Université Paul Sabatier-Toulouse III).
- [4] Cichocki, J., Ważna, A., Bator-Kocoł, A., Lesiński, G., Grochowalska, R., & Bojarski, J. (2021). Predation of invasive raccoon (*Procyon lotor*) on hibernating bats in the Nietoperek reserve in Poland. Mammalian Biology, 101(1), 57-62.
- [5] McAlpine, D. F., Vanderwolf, K. J., Forbes, G. J., & Malloch, D. (2011). Consumption of bats (Myotis spp.) by raccoons (Procyon lotor) during an outbreak of white-nose syndrome in New Brunswick, Canada: implications for estimates of bat mortality. The Canadian Field-Naturalist, 125(3), 257-260.
- [6] Sparks, D. W., Simmons, M. T., Gummer, C. L., & Duchamp, J. E. (2003). Disturbance of roosting bats by woodpeckers and raccoons. Northeastern Naturalist, 10(1), 105-108.
- [7] Gautrelet, M. (2023). Écologie spatiale et régime alimentaire du Raton laveur (Procyon lotor) en France métropolitaine (Doctoral dissertation, UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE).
- [8] Lemaire, M., & Arthur, L. (2009). Les Chauves-souris de France Belgique Luxembourg et Suisse. Biotope.
- [9] Dietz, C., Helversen, O. von & Nill, D. L'encyclopédie des chauves-souris d'Europe et d'Afrique du Nord : Biologie, caractéristiques, protection. (Delachaux et Niestlé: 2009)
- [10] Nyssen, P., Projet d'étude des chauves-souris dans la Forêt de Saint-Michel-Freyr, Rapport 2020, Août 2021, Ecofirst.
- [11] Krauze-Gryz, D. A. G. N. Y., & Gryz, J. A. K. U. B. (2015). A review of the diet of the red squirrel (*Sciurus vulgaris*) in different types of habitats. Red squirrels: ecology, conservation & management in Europe, 39-50.
- [12] Leyens, R. (2025). Suivi de l'interaction du raton laveur avec les arbres à cavités et la faune qui leur est associée sur le massif forestier de Saint-Michel Freyr. Université de Liège, Liège, Belgique.

- [13] Renard, P. (2022). Quantification de l'impact du raton laveur (*Procyon lotor*) sur les populations de chouette hulotte (Strix aluco) en Wallonie. Université de Liège, Liège, Belgique.
- [14] Tossens, S. (2021). Analyse de la dynamique des populations de ratons laveurs (*Procyon lotor*) en Wallonie et estimation des densités de population dans deux massifs forestiers par pièges photographiques.
- [15] Stanton, L. A., Cooley-Ackermann, C., Davis, E. C., Fanelli, R. E., & Benson-Amram, S. (2024). Wild raccoons demonstrate flexibility and individuality in innovative problem-solving. Proceedings B, 291(2027), 20240911.

Légende	Latitude	Longitude	Gîte	Espèces identifiées	Individus	Peuple-	Structure	Age	Compar-	llot
7					maidaes	וווכווור			,	d
-	50,06935876	5,409977455	Hetre vivant	Myotis nattereri	MnatM197	Hetres	Futale pure	Ages multiples	4	∞
2	50,06942953	5,409739268	Hêtre vivant	Myotis nattereri	MnatM197	Hêtres	Futaie pure	Ages multiples	4	7
cc	50,07252587	5,401099997	Hêtre vivant	Myotis nattereri	MnatM303	Hêtres	Futaie pure	Ages multiples	က	12
4	50,07265141	5,401119997	Hêtre vivant	Myotis nattereri	MnatM303	Hêtres	Futaie pure	Ages multiples	က	12
2	50,07340324	5,419663458	Bouleau vivant	Myotis bechsteinii	MbecM235	Lande	/	/	086	27
9	50,073507	5,4183623	Indéterminé	Myotis bechsteinii, Myotis nattereri	MbecM235, MnatM236	Hêtres	Futaie pure	Ages multiples	086	28
7	50,07650887	5,376522268	Chêne vivant	Nyctalus leisleri	NleiF064	Hêtres	Mélange	Ages multiples	27	2
8	50,077253	5,395002	Hêtre vivant	Plecotus auritus	PaurM137	Hêtres	Futaie pure	Ages multiples	138	_
6	50,0773209	5,354324	Frêne mort	Myotis alcathoe	MalcM272	Hêtres	Futaie pure	Ages multiples	41	_
10	50,0775269	5,354228542	Frêne mort	Myotis alcathoe	MalcM272	Hêtres	Futaie pure	Ages multiples	41	_
7	50,07757742	5,354967	Frêne mort	Nyctalus leisleri	NleiM004	Autres	Futaie pure	Ages multiples	20	2
12	50,07765	5,37633	Chêne vivant	Nyctalus leisleri	NleiF050	Hêtres	Mélange	Ages multiples	27	2
13	50,07766539	5,381217726	Chêne vivant	Nyctalus leisleri	NleiF050,N- leiF064	Hêtres	Futaie pure	Ages multiples	30	2
14	50,0792619	5,400858542	Chêne vivant	Plecotus auritus	PaurM196	Hêtres	Futaie pure	Ages multiples	139	_
15	50,07928979	5,372694271	Hêtre vivant	Myotis nattereri	MnatM274	Hêtres	Mélange	Ages multiples	27	2
16	50,079906	5,359164	Chêne vivant	Nyctalus leisleri	NleiM004	Hêtres	Futaie pure	Ages multiples	22	~
17	50,0819	5,42075	Hêtre vivant	Myotis nattereri	MnatF156, MnatF304	Hêtres	Futaie pure	+05	145	28
18	50,08382645	5,342923768	Hêtre vivant	Myotis alcathoe	MalcM184	Chênes	Mélange	Ages multiples	17	2
19	50,08387217	5,375270368	Pavillon Saint- Michel	Pipistrellus pipistrellus	PpipF083	_			28	6
20	50,08570767	5,349222364	Hêtre mort	Myotis brandtii	MbraM200	Hêtres	Futaie pure	Ages multiples	7	~
21	50,08579276	5,351079997	Hêtre vivant	Myotis brandtii	MbraM200	Hêtres	Futaie pure	Ages multiples	7	_
22	50,08773479	5,341400729	Frêne mort	Myotis alcathoe	MalcM184	Hêtres	Mélange	Ages multiples	18	2
23	50,08855	5,3982	Chêne vivant	Plecotus auritus	PaurM137	Hêtres	Futaie pure	Ages multiples	117	_

	2	8	12	/	_
	~	104	104	_	_
	Ages multiples	Ages multiples	Ages multiples	/	/
/	Futaie pure	Futaie pure	Mélange	/	/
/	Autres	Hêtres	Hêtres	/	
MbraM200,P- pipF207,Ppi- pF254	NleiF286	Paur- M101,PaurM112	PaurF125	NleiF286	GRhiF303
Myotis brandtii, Pipis- trellus pipistrellus	Nyctalus leisleri	Plecotus auritus	Plecotus auritus	Nyctalus leisleri	Rhinolophus ferrume- quinum
Auberge du Prévost	Frêne mort	Hêtre vivant	Hêtre vivant	Chêne vivant	Trou d'en Faule
5,336741418	5,344953897	5,373561729	5,3712771	5,370374	5,199138
50,08964593	50,09170118	50,09604503	50,096302	50,104652	50,117232
24	25	26	27	28	59

DONNEES BIOMETRIQUES

50.	WYLL	ט טוכ	JIMIL I	raç	OES		,			,	,	,				,	
Supervi- sion	Jérémie Guyon	Quentin Smits	Jérémie Guyon	Jérémie Guyon	Quentin Smits	Quentin Smits	Quentin Smits	Quentin Smits	Quentin Smits	Cécile Van Vyve	Quentin Smits	Cécile Van Vyve	Cécile Van Vyve	Cécile Van Vyve	Quentin Smits	Cécile Van Vyve	Cécile Van Vyve
Fréquence émetteur (MHz)	150,170	150,200	150,197	150,303	150,254	Non-télé- métrée	Non-télé- métrée	150,235	150,304	Non-télé- métrée	Non-télé- métrée	150,050	150,064	150,083	150,207	Non-télé- métrée	Non-télé- métrée
Parasites	0	0	0	0	MOTOFO	MOTOFO	0	MOTOFO	0	Ø	0	0	M1	0	ML	M1	_
Etat re- produc- teur	T1E1	T1E0	T1E0	T1E1	A	Ν Α	T1E0	T0E0	A	T1E0C	T1E0	A	A	A	A	A	9
Longueur doigt 5 (mm)	35,76	43,8	79'67	54,42	39,7	37,47	34,3	51,06	51,96	37,14	38,4	47,02	45,08	41,35	40,4	40,55	_
Longueur doigt 3 (mm)	53,7	53,6	65,73	67,38	54,6	67	53,24	66,07	65,19	52	50,7	73,75	72,7	26,7	53,6	64,27	_
Longueur avant-bras (mm)	35,17	37,6	38,11	40,61	33,1	31,1	31,27	9,44	39,76	30,78	31,1	45,1	45	33,59	33	39,15	_
Poids (g)	6,78	7,14	95'9	8,74	6,16	5,28	5,67	9,34	8,67	4,82	4,94	13,1	15,55	5,29	6,39	14,54	_
Stade	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte
Sexe	Ø	٤	Z	٤	ഥ	ഥ	٤	٤	ഥ	٤	٤	ட	ഥ	ഥ	ட	ഥ	ட
Code	MbraM170	MbraM200	MnatM197	MnatM303	PpipF254			MbecM235	MnatF304			NleiF050	NleiF064	PpipF083	PpipF207		
Taxon	Myotis brandtii	Myotis brandtii	Myotis nat- tereri	Myotis nat- tereri	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Myotis bechsteinii	Myotis nat- tereri	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Nyctalus leisleri	Nyctalus leisleri	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Nyctalus leisleri	Nyctalus leisleri
Heure	23h10	00h50	23h00	23h36	22h30	22h30	22h10	00h20	1h00	22h17	22h15	01h15	23h30	22h30	00h45	23h30	23h30
Date	7/5/2024	7/5/2024	7/5/2024	7/5/2024	7/5/2024	7/5/2024	7/5/2024	7/6/2024	7/6/2024	7/6/2024	7/6/2024	7/7/2024	7/7/2024	7/7/2024	7/7/2024	7/7/2024	7/7/2024
Site	FAL	PRA	FAL	FAL	PRA	PRA	PRA	CAI	CAI	GUE	CAI	NMA	NMA	NMA	CMA	NMA	NMA
#	~	2	к	4	2	9	7	_∞	6	10	7	7	13	14	15	16	17

Cécile Van Vyve	Cécile Van Vyve	Cécile Van Vyve	Cécile Van Vyve	Quentin Smits	Pierrette Nyssen	Jérémie Guyon	Jérémie Guyon	Jonathan Demaret	Pierrette Nyssen	Jérémie Guyon	Jérémie Guyon	Jérémie Guyon	Jérémie Guyon	Jonathan Demaret	Pierrette Nyssen	Jonathan Demaret	Quentin Smits
Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	150,303	150,156	150,236	150,137	150,196	150,186	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	150,184	150,014	150,274
M1	0	0	0	0	0	0	0	0	0	M	0	0	0			0	0
NA	ΥN	⋖	T1E0c	T1E0	A		T1E0	T0E1S	T0E1S	A	۷	9	T2E0		TOEOB	T1E0	1161
43,94	41,22	45	33,3	39	53,89	45,9	48,6	50,73	50,02	46,04	37,17	39,85	37,86		46,95	51,5	51,3
70,44	72,19	72,27	47,14	75	76,74	59,2	62,9	61,9	60,48	56,47	48,56	47,81	52,24		57,16	65,4	64,5
7,44	43,71	47,78	26,57	33	57,18	37,3	37,64	38,92	38,63	34,37	30,45	31,49	31,83		33,02	39,52	39,23
13,5	13,6	14,91	5,24	5,29	22,37	9,11	6,87	89'6	7,12	7,73	5,25	2,66	5,26		5,22	7,32	2,46
Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Juvénile	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte		Adulte	Adulte	Adulte
ட	ഥ	ட	Σ	Σ	ட	ட	Ø	Σ	Σ	ட	ட	ഥ	Ø		Ø	Σ	Σ
					GRhiF303	MnatF156	MnatM236	PaurM137	PaurM196	PnatF186					MalcM184	MnatM014	MnatM274
Nyctalus leisleri	Nyctalus leisleri	Nyctalus leisleri	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Rhinolo- phus ferru- mequinum	Myotis nat- tereri	Myotis nat- tereri	Plecotus auritus	Plecotus auritus	Pipistrellus nathusii	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Pipistrellus pipistrellus	Pipistrellus sp.	Myotis alca- thoe	Myotis nat- tereri	Myotis nat- tereri
23h30	00h05	00005	23h20	22h20	23h40	01h35	22h45	01h15	00h18	01100	22h20	22h45	22h45	00h20	00h17	00h05	22h52
7/7/2024	7/7/2024	7/7/2024	7/7/2024	7/7/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/8/2024	7/9/2024	7/9/2024	7/9/2024
N W W	NMA	NMA	NMA	CMA	TRI	BCA	BCA	PRI	TRI	BCA	BCA	BCA	BCA	PRI	FSM	NMA	НСО
18	19	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35

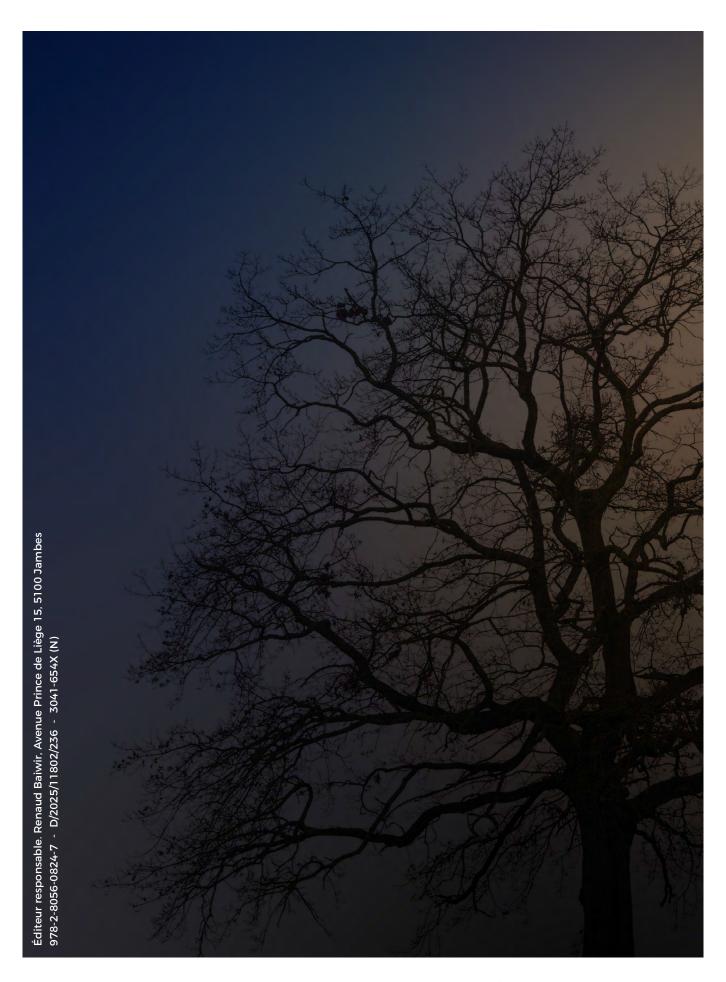
Jonathan Demaret	Pierrette Nyssen	Pierrette Nyssen	Pierrette Nyssen	Jonathan Demaret	Jonathan Demaret	Pierrette Nyssen	Pierrette Nyssen	Jonathan Demaret	Jonathan Demaret	Jonathan Demaret	Jérémie Guyon	Jérémie Guyon	Jonathan Demaret	Jonathan Demaret	Jonathan Demaret	Pierrette Nyssen	Pierrette Nyssen
Non-télé- métrée	Non-télé- métrée	150,272	150,287	150,097	150,286	150,004	150,037	150,125	150,101	150,112	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée	Non-télé- métrée
0	M1		0	M1	0	0	0	0	0	0	0	M1T0F0	0	0	0	×	
T2E0	T1E0	T0E0	Ν	A	⋖	T2E0	T2E0	۷	T0E0	T0E0	Þ	Ŋ	T1E0S	T2E0	۷	۷	
37,85	43,12	41,29	43,86	48,15	45,1	47,83	48,04	52,06	90'94	48,15	96'8†	47,32	62,25	52,08	45,2	41,63	
52,23	54,29	52,53	55	73,3	70	68,84	76,64	64,75	58,66	61,33	54,62	59,82	86,4	65,85	70,3	55,33	
33,09	29,85	32,93	35,34	42,4	43,2	43,88	44,35	40,16	37,63	39,9	38,03	38,23	28	39,95	43	33,2	
5,06	4,27	5,09	6,3	15,84	16,13	16,26	15,08	9,32	6,7	_∞	6,77	10,01	26,18	7,95	15,14	8,9	
Adulte	Juvénile	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte	Adulte
٤	Z	Σ	ட	ட	ட	٤	٤	ட	٧	٤	ட	ட	٤	٤	ட	ഥ	٤
		MalcM272	MbraF287	NleiF097	Nlei F286	NleiM004	NleiM037	PaurF125	PaurM101	PaurM112							
Pipistrellus pipistrellus	Pipistrellus sp.	Myotis alca- thoe	Myotis brandtii	Nyctalus leisleri	Nyctalus leisleri	Nyctalus leisleri	Nyctalus leisleri	Plecotus auritus	Plecotus auritus	Plecotus auritus	Myotis brandtii	Myotis daubentonii	Myotis myotis	Myotis nat- tereri	Nyctalus leisleri	Pipistrellus pipistrellus	Pipistrellus pipistrellus
22h45	00h15	00h07	23h04	00h35	01h05	00h07	22h05	23h25	22h40	23h00	23h12	02h20	00h35	23h52	00h55	23h51	21h52
7/9/2024	7/9/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024
NMA	FSM	ARB	ARB	HAL	HAL	ARB	ARB	HAL	HAL	HAL	PRA	PRA	HAL	HAL	HAL	ARB	ARB
36	37	38	39	40	14	45	43	44	45	94	<i>L</i> 47	48	64	20	51	52	53

Pierrette Nyssen	Jérémie Guyon	Jonathan Demaret	Jonathan Demaret										
Non-télé- métrée	Non-télé- métrée	Non-télé- métrée											
Σ	Σ	0	Ø	Σ	Σ	Σ	Σ	Ø	Σ	0	0	0	
12	T2	T2	T2	Ε	12	12	1	173	12	12	T2E1	T0E0	
37,04	37,9	39,85	40,05	37,59	04	39,1	39,55	37,54	39,52	37,48	37,64	52,45	
51,15	52,11	50,27	52,45	53,51	56,02	54,6	54,13	52,22	52,52	51,5	48,84	66,84	
29,68	32,13	31,2	31,66	31,82	31,89	32,01	30,79	31,04	32,18	31,24	31,31	40,15	40,91
4,77	5,46	5,5	5,79	4,92	5,25	5,48	6,4	5,32	80'9	5,66	5,51	7,65	
Adulte	Adulte	Adulte											
Σ	Σ	Σ	Ø	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Ø	Σ	Σ
Pipistrellus pipistrellus	Plecotus auritus	Plecotus austriacus											
22h05	22h05	22h05	22h05	22h05	22h25	22h25	22h25	22h45	22h45	00h25	22h19	23h25	00h15
7/10/2024 22h05	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024	7/10/2024 00h15
ARB	PRA	HAL	HAL										
54	22	26	27	28	29	09	61	62	63	64	65	99	29

Crédits photographiques :

Couverture : Violaine Fichefet P. 8 : Figure 2 : Jérémie Guyon P. 9 : Figure 3 : Lionel Lebon P. 9 : Figure 4 : Natagora

P. 12 : Figure 6 : Natagora, Myotis nattereri : Quentin Smits


P. 12 : Gabi Rusu

P. 13 à 17 : Quentin Smits

P. 20 : Natagora

P. 21 : CREAVES Namur P. 22 : Quentin Smits P. 23 : Natagora

P. 26: Quentin Smits

